首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9133篇
  免费   586篇
  2021年   60篇
  2020年   39篇
  2019年   80篇
  2018年   99篇
  2017年   76篇
  2016年   125篇
  2015年   197篇
  2014年   212篇
  2013年   554篇
  2012年   447篇
  2011年   458篇
  2010年   251篇
  2009年   272篇
  2008年   452篇
  2007年   412篇
  2006年   451篇
  2005年   432篇
  2004年   432篇
  2003年   435篇
  2002年   426篇
  2001年   312篇
  2000年   313篇
  1999年   258篇
  1998年   115篇
  1997年   111篇
  1996年   88篇
  1995年   97篇
  1994年   92篇
  1993年   98篇
  1992年   185篇
  1991年   184篇
  1990年   163篇
  1989年   163篇
  1988年   158篇
  1987年   136篇
  1986年   107篇
  1985年   89篇
  1984年   119篇
  1983年   88篇
  1982年   59篇
  1981年   69篇
  1980年   68篇
  1979年   103篇
  1978年   74篇
  1977年   86篇
  1976年   50篇
  1975年   46篇
  1974年   50篇
  1973年   55篇
  1972年   46篇
排序方式: 共有9719条查询结果,搜索用时 31 毫秒
71.
Monodeiodination of T4 to T3 and rT3 in the intact cells of dog renal tubuli and glomeruli was investigated. The tubuli and glomeruli were obtained by a sieve method. T4 (2 micrograms/ml) was incubated in Tris-HCl buffer, pH 7.5, with renal cells (180 micrograms protein/ml) and 5 mM DTT for 1 h at 37 degrees C and the T3 and rT3 generated during incubation were measured by specific radioimmunoassays. In order of decreasing activity, dog renal cortical tubuli, cortical homogenate, glomeruli and medullary tubuli were capable of converting T4 to T3. Net rT3 production from T4 in cortical tubuli was also greater than that in cortical homogenate. The conversion of T4 to T3 and also to rT3 in cortical tubuli was enzymatic in nature, since the reactions showed dependence on time and protein concentration; instability to heating; temperature and pH optimum. The production of T3 and rT3 from T4 was maximum at pH 6.5 and at pH 9.5, respectively, indicating that two different enzymic systems, a 5- and a 5'-monodeiodinase, might be involved in the deiodination of the tyrosyl and the phenolic ring of T4 in dog kidney.  相似文献   
72.
cDNA clones complementary to MS7-4 (Setoguchi et al. (1988) Somat. Cell Mol. Genet. 14, 427-438) from a mouse macrophage cDNA library were separated. Sequence analysis of these clones demonstrated that the longest cDNA clone, MS7X, had a 1366 bp insert and high homology with that of the human CD14 gene (Ferrero and Goyert (1988) Nucleic Acids Res. 16, 4173). Using the MS7X cDNA probe, cDNA clones were separated from cDNA libraries constructed from a human macrophage cell line and macrophages. The total cDNA sequence was 1364 bp in length, with an open reading frame of 1125 nucleotides matching that of the human CD14 gene except for one nucleotide difference. The amino-acid sequence (mouse CD14), deduced from the nucleotide sequence of the MS7X insert consisted of 351 amino-acid residues with a high leucine content (17.66%) and five putative N-glycosylation sites, and in vitro translation predicted a protein of molecular mass of 37.5 kDa. Human CD14 had 356 amino-acid residues, with high leucine content (15.5%), and contained four putative N-glycosylation sites. Mouse CD14 showed 13 building blocks, of which internal nine blocks have a conserved leucine motif and significant homology with human leucine-rich alpha 2-glycoprotein.  相似文献   
73.
74.
75.
76.
The cyanobacterium Nostoc commune is adapted to the terrestrial environment and has a cosmopolitan distribution. In this study, the role of extracellular polysaccharides (EPS) in the desiccation tolerance of photosynthesis in N. commune was examined. Although photosynthetic O2 evolution was not detected in desiccated colonies, the ability of the cells to evolve O2 rapidly recovered after rehydration. The air-dried colonies contained approximately 10% (wt/wt) water, and field-isolated, natural colonies with EPS were highly water absorbent and were rapidly hydrated by atmospheric moisture. The cells embedded in EPS in Nostoc colonies were highly desiccation tolerant, and O2 evolution was not damaged by air drying. Although N. commune was determined to be a mesophilic cyanobacterium, the cells with EPS were heat tolerant in a desiccated state. EPS could be removed from cells by homogenizing colonies with a blender and filtering with coarse filter paper. This treatment to remove EPS did not damage Nostoc cells or their ability to evolve O2, but O2 evolution was significantly damaged by desiccation treatment of the EPS-depleted cells. Similar to the EPS-depleted cells, the laboratory culture strain KU002 had only small amount of EPS and was highly sensitive to desiccation. In the EPS-depleted cells, O2 evolution was also sensitive to freeze-thaw treatment. These results strongly suggest that EPS of N. commune is crucial for the stress tolerance of photosynthesis during desiccation and during freezing and thawing.  相似文献   
77.
78.
AMP-activated protein kinase (AMPK) represents the mammalian form of the core component of a kinase cascade that is conserved between fungi, plants, and animals. AMPK plays a major role in protecting mammalian cells from metabolic stress by switching off biosynthetic pathways that require ATP and switching on ATP-regenerating pathways. In this report, we describe the isolation and characterization of the gene for the noncatalytic bovine gamma1 subunit of AMPK. The bovine ampkgamma1 (PRKAG1) gene spans in excess of 14 kb and is located at BTA 5q21-q22. It consists of 12 exons ranging in size from 38 b to 166 b, interspersed with 11 introns that range between 97 b and 6753 b in length. The coding region of the bovine gene shares 93% and 90% nucleotide sequence similarity with its human and rat counterparts, and the bovine AMPKgamma1 protein is 98% and 95% identical to its human and rat homologs, respectively, in amino acid sequence. SNP discovery using a cattle DNA panel revealed a number of polymorphisms that may be useful for the evaluation of ampkgamma1 as a candidate gene for energy metabolism-related production traits.  相似文献   
79.
80.
Rapid evolution and the convergence of ecological and evolutionary time   总被引:9,自引:0,他引:9  
Recent studies have documented rates of evolution of ecologically important phenotypes sufficiently fast that they have the potential to impact the outcome of ecological interactions while they are underway. Observations of this type go against accepted wisdom that ecological and evolutionary dynamics occur at very different time scales. While some authors have evaluated the rapidity of a measured evolutionary rate by comparing it to the overall distribution of measured evolutionary rates, we believe that ecologists are mainly interested in rapid evolution because of its potential to impinge on ecological processes. We therefore propose that rapid evolution be defined as a genetic change occurring rapidly enough to have a measurable impact on simultaneous ecological change. Using this definition we propose a framework for decomposing rates of ecological change into components driven by simultaneous evolutionary change and by change in a non‐evolutionary factor (e.g. density dependent population dynamics, abiotic environmental change). Evolution is judged to be rapid in this ecological context if its contribution to ecological change is large relative to the contribution of other factors. We provide a worked example of this approach based on a theoretical predator–prey interaction [ Abrams, P. & Matsuda, H. (1997) . Evolution, 51, 1740], and find that in this system the impact of prey evolution on predator per capita growth rate is 63% that of internal ecological dynamics. We then propose analytical methods for measuring these contributions in field situations, and apply them to two long‐term data sets for which suitable ecological and evolutionary data exist. For both data sets relatively high rates of evolutionary change have been found when measured as character change in standard deviations per generation (haldanes). For Darwin's finches evolving in response to fluctuating rainfall [ Grant, P.R. & Grant, B.R. (2002) . Science, 296, 707], we estimate that evolutionary change has been more rapid than ecological change by a factor of 2.2. For a population of freshwater copepods whose life history evolves in response to fluctuating fish predation [ Hairston, N.G. Jr & Dillon, T.A. (1990) . Evolution, 44, 1796], we find that evolutionary change has been about one quarter the rate of ecological change – less than in the finch example, but nevertheless substantial. These analyses support the view that in order to understand temporal dynamics in ecological processes it is critical to consider the extent to which the attributes of the system under investigation are simultaneously changing as a result of rapid evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号